Code Girls: Cryptography

Samantha Allen and Marisabel Rodriguez

Sonia Kovalevsky Day
Dartmouth College

May 11, 2019

Recruited from settings as diverse as elite womens colleges and small Southern towns, more than ten-thousand young American women served as codebreakers for the U.S. Army and Navy during World War II.

Definitions

- Plaintext is a message to be communicated.
- Ciphertext is a disguised version of a plaintext.
- Encryption is the process of turning plaintext into ciphertext.
- Decryption is the process of turning ciphertext into plaintext.
- Cryptology is the study of encryption and decryption.
- Cryptography is the application of cryptology.

First Example: Caesar Cipher

Shift each letter in the alphabet by a fixed number called the key.

Example: \quad Key $=5$

$$
\begin{array}{ccc}
A & \xrightarrow{+5} & F \\
B & \xrightarrow{+5} & G \\
C & \xrightarrow{+5} & H \\
& \vdots & \\
U & \xrightarrow{+5} & Z \\
V & \xrightarrow{+5} & A \\
W & \xrightarrow{+5} & B
\end{array}
$$

First Example: Caesar Cipher

Plaintext	A	B	C	D	E	F	G	H	I	J	K
Ciphertext	F	G	H	I	J	K	L	M	N	O	P

Plaintext	L	M	N	O	P	Q	R	S	T	U
Ciphertext	Q	R	S	T	U	V	W	X	Y	Z

Plaintext	V	W	X	Y	Z
Ciphertext	A	B	C	D	E

Encrypt

First Example: Caesar Cipher

Alternative approach: Assign each letter a number, add the key to that number, and then switch back to letters.

First Example: Caesar Cipher

Alternative approach: Assign each letter a number, add the key to that number, and then switch back to letters.

Letter	A	B	C	D	E	F	\cdots	X	Y	Z
Number	0	1	2	3	4	5	\cdots	23	24	25

$$
\begin{aligned}
& A|0 \xrightarrow{+5} 5| F \\
& X|23 \xrightarrow{+5} \quad 28| ?
\end{aligned}
$$

In order to "wrap around": find the remainder after dividing by 26.

First Example: Caesar Cipher

Alternative approach: Assign each letter a number, add the key to that number, and then switch back to letters.

Letter	A	B	C	D	E	F	\cdots	X	Y	Z
Number	0	1	2	3	4	5	\cdots	23	24	25

$$
\begin{aligned}
& A|0 \xrightarrow{+5} 5| F \\
& X|23 \xrightarrow{+5} \quad 28| ?
\end{aligned}
$$

In order to "wrap around": find the remainder after dividing by 26.

$$
28 \div 26=1 \text { with remainder } 2
$$

So the ciphertext for X should be the letter corresponding to 2 .

First Example: Caesar Cipher

Alternative approach: Assign each letter a number, add the key to that number, and then switch back to letters.

Letter	A	B	C	D	E	F	\cdots	X	Y	Z
Number	0	1	2	3	4	5	\cdots	23	24	25

$$
\left.\begin{array}{l|ll|l}
A & 0 & \xrightarrow{+5} & 5 \mid F \\
X & 23 & \xrightarrow{+5} & 28
\end{array} \right\rvert\, \mathrm{C}
$$

In order to "wrap around": find the remainder after dividing by 26.

$$
28 \div 26=1 \text { with remainder } 2
$$

So the ciphertext for X should be the letter corresponding to 2 .

Notation

If r is the remainder of a when dividing by n, then we write

$$
a \equiv r \quad \bmod n
$$

"a is congruent to $r \bmod n$ "

Notation

If r is the remainder of a when dividing by n, then we write

$$
\begin{gathered}
a \equiv r \bmod n . \\
" a \text { is congruent to } r \bmod n "
\end{gathered}
$$

For example,

$$
28 \equiv 2 \bmod 26
$$

Notation

If r is the remainder of a when dividing by n, then we write

$$
\begin{gathered}
a \equiv r \bmod n . \\
" a \text { is congruent to } r \bmod n \text { " }
\end{gathered}
$$

For example,

$$
28 \equiv 2 \bmod 26
$$

So, if a letter is assigned the number a in 0 through 25 , then to find the result of a Caesar cipher with key k we can compute

$$
a+k \equiv r \bmod 26
$$

and the number corresponding to r will be the cipher text.

Breakout 1: Encrypt a message.

Each group has been given an envelope. Open that envelope. This is a message that must be kept secret.

Your task: Use a Caesar cipher with a key of your choosing to encrypt the message.

- Choose a key as a group.
- Once you have chosen a key, use division of labor to encrypt the message.
- Be sure to keep the key secret from the neighboring groups.

Decrypting a Caesar cipher

If you know the key?

Decrypting a Caesar cipher

If you know the key? Shift back.

Decrypting a Caesar cipher

If you know the key? Shift back.
Given the encrypted value r, find plaintext value a so that

$$
a+k \equiv r \bmod 26
$$

In other words,

$$
(a+k) \div 26=d \text { with remainder } r
$$

This means

$$
\begin{gathered}
a+k=d \times 26+r \\
a-(d \times 26)=r-k
\end{gathered}
$$

So

$$
r-k \equiv a \bmod 26
$$

Decrypting a Caesar cipher

What if you don't know the key?

Decrypting a Caesar cipher

What if you don't know the key?

- How many different keys are possible?

Decrypting a Caesar cipher

What if you don't know the key?

- How many different keys are possible?
- How can we make educated guesses about the key?

Frequency Analysis

Given a sufficiently large block of ciphertext, the frequency of each letter should follow the rules of the English language.

Breakout 2: Intercept a message.

The interceptor's task: Decrypt the message (without the key!).

- Count the number of times each letter appears in the ciphertext. Identify the letters that are most common.
- Use the frequency analysis chart for the English language found in your packets to make a guess about the plaintext corresponding to the most common letter in the ciphertext.
- Identify which key would cause the correct shift of the most common letter.
- Use that key to decrpyt the ciphertext.
- If the result is nonsense, try choosing the key based on the next most common letter in the ciphertext.

Improvements?

Breakout 3: Random substitution cipher.

Each of you has been given a block of encrypted text. Each letter corresponds to a different letter in the English alphabet. However, a Caesar cipher was not used. Each letter was assigned randomly. Use frequency analysis to identify most common letters, and then use context clues to find the plaintext.

